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ABSTRACT 

The collection of data and their analytical reduction required to 

orient the Pegasus satellites a r e  described. 

accurately related in space and time to the sun and other celestial bodies, 

Pegasus body-fixed axes are space-fixed by orienting them with the space- 

Since earth-fixed axes a r e  

fixed earth axes. 

Earth and sun vectors a r e  established in Pegasus-fixed and earth- 

fixed coordinates as the basis for the analysis. 

determined from ephemerides, and Pegasus-fixed values a r e  determined 

from data telemetered from the solar aspect and infrared sensors on the 

satellites. 

Earth-fixed values a r e  

An understanding of the design, orientation, and application of 

Pegasus sensors is essential for the correct use of the sensor data. 

Corrected interpretation of Gray-coded sun-sensor calibration is explained. 

The analytic means a r e  described for reducing probable e r ror ,  which is a 

result mainly of the large angle subtended by the earth disk, in the earth vector. 

Relationships of Pegasus body axes and of earth-fixed axes to an 

intermediate coordinate system a r e  formulated as two matrices. 

product of one matrix with the transpose of the second i s  a matrix suitable 

for transforming any vector in Pegasus body-fixed coordinates to earth- 

fixed coordinates. In addition, a method is described for calculating the 

The 

satellites' weighted average angular momentum vector. 
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I. INTRODUCTION 

When a directional analysis of Pegasus meteoroid data was plan- 

ned, installation of an attitude sensing system on the Pegasus satellite, 

for determining satellite orientation, became imperative. The reduced 

probabilities of meteoroid impact due to earth shielding can be estimated 

by knowing only the satellite's position in  orbit. But the analysis i s  much 

more meaningful i f  one also knows the direction a detection panel is facing' 

when a hit occurs. 

on board the satellite can be refined i f  sensor orientation is known, 

The motion of the satellite was  itself a significant problem, 

In addition, analysis of data from radiation sensors 

A t  

the time of launch, little theoretical work had been done on the rotational 

motion of rigid bodies in orbit having differing moments of inertia about 

each of the three principal axes; for example, almost all researchers 

had assumed two of the moments of inertia to be equal. 

satellites afforded an opportunity to formulate and check a theory of this 

particular kind of rotational motion. 

The Pegasus 

This paper deals with only one aspect of the investigation, the re- 

duction of Pegasus data to meaningful numbers. 

the instantaneous orientation, and a way of finding values of the average 

angular momentum vector are described. 

The method of calculating 

Both types of data a r e  being 

compiled into ephemerides which wil l  be published. 

11. CALCULATION OF THE SPACE-FIXED VECTORS 

This section outlines the calculation of the space-fixed earth and 

sun vectors. 

located in a geocentric equatorial coordinate system. 

the vernal equinox is the reference direction, and the earth's equatorial 

plane is the reference plane (Fig. 1).  

Space-fixed as commonly used means that vectors a r e  

The direction of 

Since only the directions of the 



FIGURE 1.  SPACE-FIXED AND ORBIT-PLANE COORDINATE SYSTEMS 
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vectors are important here, all vectors are normalized to unit length. 

A s  a reminder to the reader, each unit vector is identified by a.cap ( A  ). 

The vector 3 pointing from the earth to the sun can be found in 

any relevant solar ephemeris. 

pointing from the satellite to the sun, since the 0. 003-degree parallax 

between them is negligible. 

This is considered the same as the vector 

h 

The space-fixed unit earth vector R, which points from earth 

center to satellite center, is calculated from satellite tracking data using 

equations developed with the following orbital elements: 

T =  
0 

- 
0 0  - 
n =  
i =  

w =  
0 

b 
w =  

M =  

N =  
0 

0 

e =  

epoch time (time to which all position measurements are 
ref e r r ed) 

right ascension of ascending node at T 

rate of change of 0 (regression of nodes) 

inclination of the orbit plane to the earth equatorial plane 
(very nearly constant) 

argument of perigee at T 

rate of change of w (advance of perigee) 

mean anomaly at T 

mean motion (angular orbital speed) at T 

rate of change of mean motion 

eccentricity 

0 

0 

0 

0 

A A 

To obtain the space-fixed earth vector R, an earth vector R" is 

first calculated in  a coordinate system having the perigee direction of 

the satellite orbit as the reference direction and the orbit plane as  its 

reference plane (see Fig. 1). 

double-primed letters. 

fixed coordinate s. 

Quantities in this system a r e  denoted by 
A 

Then R is obtained by transforming fir' into space- 

The mean anomaly M is the angle which i s  the product of mean 

angular velocity of the satellite and the elapsed time after some specified 

epoch. time T 
0 

M = M t N (t-T ) t 3 k ( t - T  l2 O<M<Zr 
0 0 0 0 
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The eccentric anomaly E can be derived by successive approxi- 

mations, using the calculated value of M, the ephemeris value of e, and 

Kepler' s equation (relating the mean and eccentric anomalies): 

E = M -k e sin E 

The true anomaly, angle V, locating the satellite a t  time t, is 

derived from the geometry of the elliptic orbit as: 

E 
tan - 2 

v = 2tan-l  

Then, in the orbit plane, 

The Euler angle matrix [A- 1] given in Goldstein [ 11 may be used 

to transform the orbit-plane coordinates of the satellite-earth unit vector 

to  space-fixed coordinates after the following identifications are made: 

4 4 =  os 44c 2-k 

8 = i  O < t l < T  
0 

J/ = w  0 t & ( t - T 0 )  O I $ < Z ? r  

Then =[A* '] fill 
* A 

Computation of the space-fixed vectors S and R requires no obser- 

vations from the satellite itself; thus, they can never give the satellite's 

orientation, 

obtained from satellite sensor data, 

a means of improving on the raw data obtained from the satellite sensors. 

Their accuracy, however, is much greater than the vectors 

This fact will  be applied later as  

111. CALCULATION O F  THE BODY-FIXED VECTORS 

Two independent vectors have been established based upon obser- 

vations from the earth. To determine satellite orientation, measurements 

for calculating these vectors must be made from the satellite. 

coordinate system used is shown in Figure 2. 

The 

The chosen axes correspond 
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FIGURE 2. PEGASUS BODY -FIXED COORDINATE SYSTEMS 

5 



to the principal axes of the body: X I  is the axis of the maximum moment 

of inertia, 2' is the axis of the minimum moment of inertia, and y' i s  the 

axis of the intermediate moment of inertia. 

a r e  denoted by primed letters. 

(All body-fixed quantities 

Knowledge of the sun and earth vectors 

in the body-fixed system and in the space-fixed system will enable a deter- 

mination of the relationship of the body-fixed coordinate system to the 

space-fixed coordinate system. Application of this relationship to the 

body-fixed coordinates gives the desired space orientation of the body. 

A, Calculation of the Sun Vector 
A 

Data for the calculation of the body-fixed sun vector S' a r e  tele- 

The sun metered from Pegasus a s  the output of any of five sun sensors. 

vector is found first in sensor coordinates x':, y':, z': for an individual 

sensor and then transformed into body-fixed coordinates. 

of the sensors determines how the sensor-fixed sun vector is calculated, 

a brief description of the device is given. 

Since the design 

1. 

Each sun sensor is a small aluminum block (5.7 c m  by 5.7 cm 

General Description of the Sun Sensor 

by 1 cm) containing two aspect sensors at right angles to each other [2] .  

The aspect sensor (Fig. 3) is an oblong block of fused quartz having a slit 

centered along its top surface, and a Gray-coded reticle and seven photo- 

sensitive strips on its bottom surface. 

The reticle consists of an opaque surface with rectangular clear 

a reas  patterned to transmit sunlight selectively to the photocells beneath, 

Light passes through the slit, casting a narrow band of illumination across  

the seven rows of clear areas. Thus seven bits of information reading 

respectively "yes" o r  "no" a r e  given as sunlight either passes through a 

reticular aperture and energizes a photocell, o r  is blocked by an opaque 

area. 

and being refracted at the surface of the quartz block. 

The illustration shows a typical sun ray entering an aspect sensor 

The "sheet" of 
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FIGURE 3. SOLAR ASPECT SENSOR 
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sunlight above the block i s  composed of the rays "selected" by the slit 

from the total incident beam of light and transmitted after refraction 

into the quartz, 

the ends of the reticle a r e  never in shadow while the sun sensor is 

operating within the design field of view, 

The slit is sufficiently long that the sets of openings at 

The Gray-code output signals of a sensor can be converted to 

binary and thence to decimal numbers of degrees. 

is a function of angle A, in  Figure 3. 

incident normal to the slit, having a range of 4-63, 5' to -63.5' in incre- 

ments of 1' for angle A, for values of A related to A, by Snell's Law: 

Sensor output signal 

The calibration process used rays 

sin A = r) sin Ar  (true only for rays normal to slit) 

where q i s  the refractive index of quartz. The calibration process 

represents an e r ror  in  analytic approach to sensor application. The 

e r r o r  is explained and compensated for in the analytic methods for general 

data reduction developed in the following subdivisions of this section 

The Gray-coded pattern is used because it permits a movement of the 

a rea  of illumination to cause a change in light transmission through only 

one aperture a t  a time. Thus, only one bit can change at a time. The 

use of a pattern reading directly in binary, however, would usually re- 

quire more than one-bit chahge for a one-degree change in  angle. Any 

imperfections in the pattern would result in nonsynchronous bit changes, 

and could cause catastrophic e r r o r s  in angle determinations. 

2, Derivation of Basic Sun Sensor Relations 

The sensor-fixed sun vector S" (Fig. 4) is located when its  angle 

of incidence is and the angle 8, a r e  determined. ( The angle 8 is the 

angle in the x"'-y" plane which the "vertical" plane containing the incident 

and refracted rays makes with the x" axis. ) 

The quantities is and 8 ,  can be derived from the angles A, and 

Angles A, and Br a r e  the orthogonal projections in  Br (Figs. 3 and 4). 

the quartz sensor block of the angle of refraction rs of the refracted sun 

vector ~f e 

8 



FIGURE 4. COORDINATE SYSTEMS FOR CALCULATING 
SENSOR-FIXED SUN VECTOR 
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(Ncte  that for convenience in  Figure 4 the incident sun vector S" and 

its refracted portion S: a r e  located by two displaced but mu€ually parallel 

and equivalent sets of x", yer9 and z* coordinates. ) 
.lr 

In Figure 4, S" tan Br and S" tan A, a r e  the projections of 
r Z  rz 

S" 

the Pythagorean Theorem: 

tan rs in the z" - y" and z"- x" planes, respectively. According to 
r Z  

(S': )2 tan2rs = ( S z  )2 tan2Br f 1 (S: )2 tanZ A, 
rZ Z Z 

1 
hence rs = arctan (tan2 A, t tan2Br ) z  (2) 

According to Snell's Law, sin is = 7 sin rs9 where 

index of the quartz sensor block; 

is  the refractive 

therefore, is = arcs in(  q s in r s )  (3)  

and tan 8 ,  = S* tan A,/S" tan B, (F ig .  4), hence 

8 = arctan (tan Ar/tan Br) ( 4) 

The rectangular components of S': are: 

cos e, sx = sin i 
S 

S" = sin is sin e ,  
Si = cos is 

Y 
.f. 

Thus equations (Z),  (3),  and (4) a r e  sufficient to locate the sun vector 

S:' i f  A,, Br, and 7 a r e  known. 

Angles Ar  and Br a r e  obtained from the telemetered data points 

A, and B derived from the relations a 
A, = arcsin(s in  A a / q )  (5) 

Br = arcsin (sin B,/q ) ( 6 )  
(Angles A, and Ba in equations (5) and (6) have no physical significance 

but a r e  used to correct 'for the e r ro r  introduced by the sensor design and 

calibration a s  explained in  subdivision A4, Explanation and Correct 

Application of Sun Sensor Calibration. ) 

10 



3. 

A s  shown in Figure 5, the sun sensors a r e  arranged on the 

satellite with their surfaces parallel to the faces of an imaginary square 

pyramid whose center is at the satellite's center of mass. 

launch measurements the exact orientation of each sensor relative to  

Transformation of Sun Vector to Pegasus Body Coordinates 

From pre- 

the satellite is known, 

as a matrix [Wk] which transforms any vector in the x*, Y''~ and z" 

coordinates for sensor k to Pegasus body coordinates x', y', and z ' :  

The orientation of the k th sensor is expressed 

s:: 

s:, 

S' =, Sb (7) 

Thus the sun vector in body coordinates S' is obtained. 

t 

4. 

It is apparent that the use of Snell's Law in equations (5) and (6) 

Explanation and Correct Application of Sun Sensor Calibration 

nullifies the prior application of this law during calibration of the sun 

sensors, as previously explained in Section IIIA. 

a r e  needed because of an e r ror  in  design and calibration of the sensor 

Gray-code strips. 

the projections of the incident angle is in the x"- z" and y':- z" planes 

(angles A i  and Bi) a r e  related to A, and Br by Snell's Law. 

wi l l  be shown that this premise is not true, that is, 

Equations ( 5 )  and (6) 

The design was based upon the mistaken premise that 

However it 

sin Ai # r] sin Ar = sin Aa 

sin Bi # q sin A, = sin B, 

(8) 

(9) 
This non-equality is apparent from geometric considerations, 

and may be demonstrated as follows. The equality in equation (8) is 

squared: 
T 

sin2 A, = sin2Aa/q 2 

According to a basic trignometric relation: 
1 

cos A, = (1 - sin2 Ar) 

1 1  



FIGURE 5. ARRANGEMENT O F  SOLAR ASPECT SENSORS 
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Equation (10) is substituted in equation (1 1): 

Similarly, 1 

( T z -  sinZ Ba)’ cos Br = 
‘1 

sin a sin a 
cos a 

and tan a = - = 1 

( 1 - sinza ) Z  

where a = A,, o r  Ba, or A,, o r  Br . 
In reference to Figure 4, i f  A, = Ai, and Ba = Bi, then 

s::: tan A, 

s:’ tan B, (15) 
rz 

r2 

s‘:: tan A, 

S“ tan B~ 
- - rz 

rz 

tan 19, = 

t anAr  - tan A, - o r  
tan Br tan Ba 

Values of equations (12), (13), and (14) a r e  substituted in equation 

(16): 
sin A, sin B 

1 1 
{qz - sin’ /q 1 ( 7 1 2  - sin’Ba)x/q 

- sin A, sin Ba (17) - 
1 
& 

1 - 
( 1 - sin’ A , ) ~  (1 - sin2Ba) 

With the equation further simplified the non-equality is apparent (since 

- l a5 ) :  T quartz - 

1 - sin2 A a  
1 - sin2 Ba # 9 2 -  sin2 A, 

v 2 -  sinz Ba 

and hence A, # Ai, and Ba # Bi ;  therefore equation (16) i s  false. 

Initial reduction of Pegasus sun sensor telemetry data was  erro-  

neous because the original calibration and the instructions for data re -  

duction were based upon the incorrect application of Snell’s Law indicated 

above. 

which indicated satellite nutation. However, analysis showed no valid 

The e r r o r  appeared a s  sine wave components in data-point plots, 
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reason for such motion. 

of equations (5) and (6) to obtain A, and Br, thence 8 ,  and rs, and 

through use of Snell's Law to obtain is from r 

were removed, 

When data points were corrected through the use 

the major irregularities ' S' 

Plots of the revised data points were smoothest for 

Ti = 1,455; therefore, this value of q has been used. 

The authors a r e  grateful to Dr, Leland Cunningham, Astronomy 

Department, University of California, for interpreting the source of 

error .  

This subdivision has presented a description of the sun sensor 

system and has shown how it i s  used to find the sun vector in body coor- 

dinates. The next subsection deals with the body-fixed earth vector, R', 

the last consideration necessary before the satellite orientation can be 

found. 

A 

Be Calculation of the Earth Vector 

This subsection describes the earth sensor system, how the earth 

vector is calculated, and how its accuracy i s  improved. 
* 

The earth vector R' in body coordinates points from the satellite's 

center to the earth's center. 

of six infrared sensor tubes (Fig. 6). The sensor output signals a r e  re -  

corded and subsequently telemetered (on demand) to earth where the data 

a r e  used to calculate the satellite body-fixed unit vector R'. 

points normal to opposite faces of an imaginary regular dodecahedron 

centered in the satellite. Radiation may enter through the germanium 

lens at either end of the sensor tube. When the temperature difference 

across  the thermopile exceeds the predicted differential between earth 

and space (212'K), the l'hotl' end of the tube is considered to be "on. I t  

The earth's disk subtends an angle of about 127' at apogee and about 134' 

a t  perigee; thus, at any one time, three to six sensors wil l  "see" the 

earth. 

The earth is located from Pegasus by means 

A 

Each tube 

14 
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A 

Each "on" sensor defines a vector HL directed along its sensor- 

A s  noted above, the tubes radiate with uniform angular dis- tube axis. 

tribution around a satellite center. 

a r e  "on" at any instant wil l  tend to have vectors HL more or less  uniformly 

distributed within the cone subtending the earth disk, 

Hence the three to six sensors which 
A 

Therefore a best 

value of earth vector R' is obtained by adding and normalizing the vectors 

for the three to six ''on'' sensors: 

A I  Because only six sensor tubes a r e  used, R has a 50 percent chance 

of pointing 20° or more away from the earth 's  center, The 3.5-degree 

field of view of each sensor further limits the accuracy of R 

there is a method of improving the accuracy of vector R 

plained as follows. 

However, 
A I  and it is ex- 

The sun vectors alone cannot give the complete orientation of 

Pegasus, because they can supply only two of the three E d e r  angles needed. 

However, the earth vector measurements also supply two angles, providing 

one more than is necessary. 

this allows an extra restriction on 6.' ; 
3, 3, and s '̂ is much better than that of st, and the following relationship 

Thus, the system i s  over-determined, and 

that is ,  the accuracy of vectors 

should be true: 
A A A  

- R  0 S = R' e g' ( 2 0 )  
r 

(Because of the way the earth vectors a r e  defined, c' should equal -R in  

the same coordinate system.) If equation (20) is not true, one may assume 

that the fault l ies  almost entirely with R'. 

comply with the restriction that equation (20) imposes. 

* 
Then 6' may be corrected to 

A A 

This may be done by rotating R' in the plane formed by R' and S' 

until equation (20) holds, that is, until the angle between R'  and S' is the 
r A 

A A 

same as the angle as between -R and S: 
A 

a s  = arccos (-R 5) 

16 



The rotation takes place in a new coordinate system C,, C,, C3, 
A 

efined by RL and g' (Fig. 7): 

(6'x ii:, ) s '̂ 
p"" a:, ) x "'I 

There m.. is the i t h  direction cosine of the C. axis, 

between R and g' should be as, the corrected components of R in this 

Since the angle 
A l  

5J' 3 

;ystem should be: 

rhe C, component is zero because the C, axis i s  normal to the plane of 

i' and $ l e  Now the three sets of mij  may be used to form a matrix which 

vi11 transform the new vector back to body coordinates: 

m m m 

m m m 

m m m 

11 12 

21 22 

31 32 

o s  CYs 

in as 

0 

I A 

Vector R points somewhere in a region containing the actual di- 
A 

rection from satellite to earth center. 

uhere along an a r c  in that region; this a r c  also contains the actual satellite- 

The refined vector Rb points 'some- 

:arth direction. 

17 



FIGURE 7. COORDINATE SYSTEM USED TO IMPROVE 
SATELLITE-EARTH VECTOR 6' 
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IV. 

As stated earlier,  finding the orientation of a body means find- 

CALCULATION O F  THE SATELLITE ORIENTATION 

ing the direction, in a space-fixed system, of each body axis. The 

relationship between body-fixed and space-fixed axes may be expressed 

a s  a transformation matrix [ T 3 which transforms any vector G in body 

coordinates to an equivalent vector G in  space coordinates: 

A l  

A 

The desired matrix is found by constructing a set of intermediate 

These a r e  used to calculate transformation YI, and Z I' I' coordinates X 

matrices [B] , which transforms a vector from body to intermediate 

coordinates, and [A] , which transforms a vector from space to inter- 

mediate coordinates. The desired transformation matrix is: 

The detailed calculation i s  a s  follows. An intermediate coordinate 
A 

system based on 2 and R is constructed: 

- 
- 

- 
yI - 

- 
zI - 

The same is done for S and k.': 

x; = = $ 1 '  

19 



Although only one intermediate system was  mentioned previously, 

two have been constructed. 

coordinate systems can be assumed to be parallel within good limits of 

accuracy. 

of accuracy attributable to the unimproved earth- sensor vector of equation 

(19). 
coordinate systems a r e  identical. 

The x-z planes of these two intermediate 

The x-y planes, however, a r e  parallel within the poor limits 

To use the information gathered so far, we must assume that the 

A 

Any vector in the intermediate system is represented by G thus: I' 

6 = [ A ]  ?iI ( 3 5 )  

therefore [ Bt] = GI ( 3 6 )  

and e' = [ B ]  eI 

since [ B] is an orthogonal matrix. 

Equation ( 3 6 )  is substituted in equation (35): 

2 = [A] [Bt] 6' 

[TI  = [ A l [ B t l  (38 )  

( 3 7 )  

Thus the transformation matrix expressed in equation (28) has been derived: 

V. AVERAGING O F  AXIS VECTORS 

The thkoretical methods which treat the motion of Pegasus [ 3 3 
predict the direction of the angular momentum vector (that is, the spin axis). 

An ephemeris of the spin vector calculated from observations was necessary 

to verify the theoretical methods, but the unweighted average of observations 

20 



failed to give 2 reasonably smooth ephemeris plot. Therefore, data- 

point observations of spin-axis direction were statistically smoothed to 

obtain an ephemeris of the angular momentum vector, A t  the time of 

this writing Pegasus A is spinning about the x body axis, while Pegasus 

B and Pegasus C a r e  spinning about the z body axis, 

Theory predicts for the angular momentum vector a regular path 

in so-called orbit-plane coordinates, a system having the direction of 

ascending node a s  i ts  reference direction- and the orbit plane as its 

reference plane. For this reason, the spin-axis vector is transformed 

from space-fixed to orbit-plane coordinates for smoothing, and then trans- 

formed back to space-fixed coordinates for ephemeris insertion. 

The transformation to orbit-plane coordinates is done, as in Section 

11, by means of a Euler angle matrix. 

node is 4 : 

The current value of the ascending 

4J = 0 = db f h (t-to) O I 4 < 2 a  
0 

The constant value of the inclination is 8 : 

e =  i osesr 
And the argument of perigee is ignored, so that 

J / =  0 

The transformation matrix [PI is used for transforming from space t o  

orbit-plane axes and is defined as follows: 

cos 61, cos i sin 0 sin i sin 0 

-sin 0 cos i cos 0 sin i cos 68 (39)  

0 -sin i cos i 

Each of the Pegasus body-fixed axes can be considered a s  a space- 

fixed vector. For example, 
A 

Zb = [TI 2' ( 4 0 4  
A 

where z b  is  the space-fixed vector pointing in the direction of the Z hady 

axis, and Z = ( 0 ,  0, 1) i s  the body-fixed version of the same vector. With A 1  

similar definitions, 

21 



A l l  quantities in the orbit-plane system are double-primed: 

A 2; = (P) i, or  x;: = (P) kb 

The process for smoothing spin-axis data in order to develop a 

Pegasus angular-momentum ephemeris is considered next, 

%{ for Pegasus B and Pegasus C- i s  used in the development which 

follows. 

Spin axis 

I I  (Spin axis x b  may of course be substituted for specific appli- 

cation to Pegasus A. ) 

Data telemetered from Pegasus is used for calculating the suc- 
A I I  cessive orbital point values of spin-axis attitude z b  e 

occur a t  two different rates: 

Transmissions 

1) at 5-minute intervals (normal mode) 

2) at 2 $ -  second intervals (rapid attitude mode) 
A 1 1  

Point values of Zb may be expressed as follows: 

A 

Z" 
b normal 

A .. - Z" - 
b rapid 

For each full minute of rapid attitude mode (or fraction of a minute at 

the beginning and end), an unweighted average of Zbr values is calculated: A I 1  

- 
The Z i r  averages from rapid attitude and 5'' vectors from normal mode 

are accumulated for a 6-hour interval, then averaged together: 
bn 

About fifty vectors go into this average; thus, statistical smoothing 

methods a r e  applicable. Equation (43) is used a s  an initial average to 

find the angle 0 between the average 2 and the individual vectors: 
- 1 1  

k b 

22 



(44) 
A I I  A I 1  k = a r C C O S  ( z b  zbk) 

A I 1  where zbk represents either a value of Zbr from equation (42) or  a value 

of Zbn) and k goes from 1 to about 50. 
A l l  

The actual angular-momentum 

vector should move regularly and not too quickly (neglecting any sudden 

perturbations). may be assumed to have a random (that 

is, Gaussian) distribution around the average pk. 

represents the vertex half-angle of the cone that the spin vector makes 

a s  it precesses around the angular-momentum vector. The average is 

calculated: 

The angle P k 

The average P k  

h 

and the root mean square deviation: 

Smoothing is now applied. If /3 k >  2 u for any k, a new average 

i s  calculated as in equation (43), omitting vectors for which 0 k is too 

large, 

lated and the test  is repeated. 

can be eliminated, 

remains is to transform it back to space: 

Then a new set of P k, a new average, and a new u a r e  caku-  

This is continued until no more vectors 

The final average is the desired answer, and all  that 

2b = [Pt] 5; , where [ Pt] i s  the transposed matrix of [PI 

N = maximum value of k 
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